
1

Memory-mapped mode on a Compact-Flash RAM card

I finally got a working interface between the 68HC912 SBC and a compact
flash card. This is how I did it.

COMPACT FLASH CARDS

Compact Flash (CF) cards are produced by several manufacturers to a
standard published by the CompactFlash Association. This standard covers both
the hardware (connector specification and pinout) and the software (use of the
pins) associated with these cards. Several manufacturers (SanDisk, Silicon
Systems) publish a spec for these cards. Unfortunately, none of these specs
contain any description of how you actually operate the CF, they merely describe
the registers and command structures and leave it to you to figure out what
combination in what order will do what you want.

I found an application note (from Silicon Storage Technology) describing
the use of a CF card with a 8051-compatible single board computer (SBC) that
they also offer. The hardware interface and software I came up with resulted from
study of both this app note and the CF specs from the companies noted above.

CF cards are often used as static hard drives and must interface with a PC
as though they were ATA hard drives, with a File Allocation Table, cylinders,
sectors, and heads. In order to permit standard file command structures, each
CF card contains a processor to interface the host computer to the card's actual
RAM. Note that the disk structure form of usage requires data be stored in
discrete chunks -- 512 bytes per sector in this case.

There is also a "Memory Mapped" mode available, wherein one can
address the card as a large linear memory. This mode is much simpler to use
than the ATA disk mode. It has the same limitation on sector sizes, however. You
must read or write 512 byte chunks at a time.

The CF communicates with the host via a set of memory-mapped
registers. The memory-mapped mode register set consists of 8 sequential
registers:

\CE2 \CE1 \REG A3 A2 A1 A0 READ WRITE
1 0 1 0 0 0 0 DATA DATA
1 0 1 0 0 0 1 ERROR FEATURE
1 0 1 0 0 1 0 SECTOR CNT SECTOR CNT
1 0 1 0 0 1 1 SECTOR NUM SECTOR NUM
1 0 1 0 1 0 0 CYLINDER LO CYLINDER LO
1 0 1 0 1 0 1 CYLINDER HI CYLINDER HI
1 0 1 0 1 1 0 DRIVE HEAD DRIVE HEAD
1 0 1 0 1 1 1 STATUS COMMAND

2

These registers are 'addressed' by a combination of address lines (A3-0) and
special input signals (\CE1, \CE2, and \REG). The proper combination of these
lines will permit reading or writing any of these registers.

Data is read and written through the DATA register -- 512 bytes at at time.
Once started, the correct number of bytes must be read or written. The location
on the CF of the data is set by the Sector number and the Cylinder (HI-MID-LO)
value. One can setup a linear addressing mode (Logical Block Addressing, or
LBA) that uses the last 4 bits of the DRIVE HEAD register, the two bytes of the
CYLINDER registers, and the SECTOR NUMber as a 28-bit address (LBA27-0).
Writing $Ex to DRIVE HEAD register enables the LBA addressing mode, sets the
DRIVE # to 0, and sets the addresses LBA27-24 to x.

The SECTOR CouNT tells the CF card how many sectors you plan to read
or write. The simplest choice is 1 but some (all?) CF cards have a buffer size that
is most efficient for writing data.

One can read/write data as 16-bit words or as 8-bit bytes. Since the
68HC912 SBC has an 8-bit data bus, I have elected to use the 8-bit mode. The
FEATURE register (write-only) is used to enable 8-bit transfers by writing it with
$01.

The COMMAND register is used to cause the internal CF processor to
execute commands. For example, one would write $EF to COMMAND after
setting the FEATURES register.

The COMMAND register is also used to tell the CF internal processor that
you are about to read or write a sector of data. The last thing before reading or
writing is to send $20 (read) or $30 (write) to the COMMAND register.

STATUS is used to determine if the CF is busy (bit 7 set) or if an error has
occurred (bit 0 set). This register should be read after every command; wait in a
loop until bit 7 is cleared.

Writing a $0C and then a $08 to DEVice ConTRoL register causes a soft
reset of the CF card. This may not be necessary every time, but it is a sure way
to start with the card in a known condition.

3

HARDWARE

A 74HC688 8-bit comparator is used to memory-map the CF card to
address $7EA0-7EAF. I chose this address (in RAM space) because I use a
DS1244 RTC-NVRAM for RAM and the clock registers are in the $7FFxx space.
This puts all of my memory-mapped stuff in one place in RAM. I copied the
memory-mapped peripheral method from New Micros where the upper 8 address
bits are compared to a fixed number in a 74HC688 comparator. This lets me
select any 256-byte section of memory to use for a memory-mapped peripheral
such as the CF card. When any address in this range is addressed, the '688
output goes low. This signal is diode-ORed to \MEMDIS, to signal the CPU that
an external device (not RAM) has been selected.

The output of the '688 is also used, with E-clock and R/W, to generate the
\READ and \WRITE strobes to the CF card. Reading an address in the $7Exx
space generates a \READ to the CF card, writing an address in the $7Exx space
generates a \WRITE.

I connected address lines as follows (also see the schematic):

68HC912 Compact Flash
A7 \CE2
A6 \CE1
A5 \REG

GND A10-A15
A4 A9

GND A4-A8
A0-A3 A0-A3

With this arrangement, the DATA registers for the CF occur at $7EA0-7EAF and
the control pins (\CE1, \CE2, \REG) are set appropriately for the memory-
mapped mode.

Address lines A10 and A8-4 on the CF are not used and are grounded.
Data lines D7-0 are connected to the CPU data lines.

\RDY can be used to verify the CF is ready to accept commands by
sensing it on an ADC channel; the STATUS register can also be used and this is
the mode employed in my code.

\CD1 can be used to sense the presence of a CF card. This line goes low
when a card is installed in the socket. This flag is provided since CF cards can be
hot-swapped in most applications. My application doesn't require this and so I
don't bother to sense this line. The schematic shows it connected to the ADC,
however.

4

SOFTWARE:

This is the tricky part, of course, I ended up copying the code from an
application note by SST, Inc. that showed how to control a CF card in Memory
Mode from an 8051 microprocessor. After considerable study (since I don't know
the assembly code mnemonics for this processor), I doped out the following
sequence:

1. Initalize the CF card by doing a soft reset.
2. Setup the CF by enabling 8-bit transfers and setting Drive # = 0.

Then, to read (write) to the CF, which must be done in sectors of 512 bytes at a
time,

3. Setup the address registers (sector/cylinder/head or LBA address).
4. Send a read (write) command to the command register.
5. Read (write) 512 bytes to (from) a RAM buffer.

This sequence is included in the test code, attached.

The sample code does the card initialization. Then a buffer in RAM is filled
with a bit pattern and a byte from the buffer displayed. This buffer is written to the
card. The buffer is zeroed and then the same sector on the CF card is written into
the buffer. Then a byte from the buffer is displayed and the contents compared
against the original bit pattern. The sector address is incremented by one and
this process repeats 44 more times.

cold

exram (enable external RAM

hex

1000 dp ! (load code into external RAM

(FILE TESTCF1.4th -- code to test CF-RAM on TAPS-NG CPU/IO card
(19 May 2006

(Runs from RAM

(Port use is as follows:
(
(PP0 is RUN/STOP - enables transmissions or noise datafiles
(PP1 is SHTDWN - controls power to CPU card peripherals
(high = off
(PP2 is \ADC2 - MAX111 ADC
(PP3 is \ADC1 - MAX1067 ADC
(PP4 is \DAC - AD5300BRT DAC
(PP5 is FSELECT - to select between F1 and F2 in DDS
(PP6 is \DDS - frames 16-bit transfers to DDS
(PP7 is \XGATE - transmit gate pulse

(PT0 is FREQ1 - Frequency input to timer
(PT1 is FREQ2 - Frequency input to timer
(PT2-4 is MUX - M0-M2 selects acoustic channels

5

(PT5-7 is GAIN - G0-G2 selects post-IF gains

(PDLC5 is TRANS - controls power to Transmitters
(PDLC6 is INSTS - controls power to External Instruments

(-------------------------- CONSTANTS -------------------------------
hex

006f constant portad (on-board ADC data register
0056 constant portp (Port P data register
0057 constant ddrp (Port P data direction register
00ae constant portt (Port T data register
00af constant ddrt (Port T data direction register
00fe constant pdlc (Port DLC Data register
00ff constant ddrdlc (Port DLC data direction register

0080 constant tios (Timer I/O select register
0084 constant tcnt (Timer counter register
0086 constant tscr (Timer system control register
008b constant tctl4 (Timer control register 4
008d constant tmsk2 (Timer interrupt mask register 2
008e constant tflg1 (Timer interrupt flag register 1
008f constant tflg2 (Timer interrupt flag register 2
0090 constant tc0 (Timer input compare register 1
0091 constant tc1 (Timer input compare register 2

00d0 constant spocr1 (spi 1 control register
00d1 constant spocr2 (spi 2 control register
00d2 constant spobr (spi baud rate register
00d3 constant sposr (spi status register
00d5 constant spodr (spi data register

00d6 constant ports (Port S data register
00d7 constant ddrs (Port S data direction register

(Addresses decoded to R/W to CF: $7EA0 - 7EAF
7ea0 constant cfdata (byte-port to flash
7ea1 constant cferror (read-only
7ea1 constant features (write only
7ea2 constant sctrcnt (sector count register
7ea3 constant LBA0 (LBA0:7 = Sector Number
7ea4 constant LBA1 (LBA8:15 = Cylinder low
7ea5 constant LBA2 (LBA16:23 = Cylinder high
7ea6 constant LBA3 (LBA24:27 = head count
7ea7 constant status (read only
7ea7 constant command (write only
7eae constant dev-ctrl (write only
7e90 constant config (r/w config register
7e96 constant socket (r/w socket & copy register

-1 constant true
0 constant false

(------------------------- VARIABLES -------------------------------

variable errorcount (holds # of errors in compare
variable testbyte (holds byte to write to CF
2variable fadr (long address of sector in FLASH
2variable tfadr (hold starting flash address

(REGISTER + 0 = errors
(REGISTER + 1 = sector count
(REGISTER + 2 = sector # or LBA 0:7
(REGISTER + 3 = cylinder low or LBA 8:15
(REGISTER + 4 = cylinder hi or LBA 16:23

6

(REGISTER + 5 = head count or LBA 24:27
(REGISTER + 6 = status

create registers (place to download CF reg's
7 allot

create buff
100 allot (Text Input Buffer

create buffer
512 allot (compact flash sector buffer

hex
(--------------------- COMPACT FLASH RAM ROUTINES --------------------------

code-sub write-cf
3b c, (pshd ; save D accumulator
34 c, (pshx ; save X register
35 c, (pshy

(; Setup Sector Address values

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
8601 , (ldaa #01
7a c, sctrcnt , (staa sctrcnt

cd c, FADR , (ldy #FADR ; point Y at FLASH address
4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
a643 , (ldaa 3,y ; LB of address
7a c, lba0 , (staa lba0

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
a642 , (ldaa 2,y ; ML byte of address
7a c, lba1 , (staa lba1

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
a641 , (ldaa 1,y ; set Low byte of ADR
7a c, lba2 , (staa lba2

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
a640 , (ldaa 0,y ; set High byte of ADR
840f , (anda #$0f ; only use low 4 bits
8ae0 , (ora #$e0 ; set CF1, LBA enabled
7a c, lba3 , (staa lba3

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
8630 , (ldaa #write
7a c, command , (staa command ; set mode to WRITE

(Write a block of 512 bytes into FLASH, checking RDY=1 before each write

ce c, buffer , (ldx #buffer ; X points at BUFFER
cd c, cfdata , (ldy #cfdata ; Y points at DATA port to FLASH
c600 , (ldb #256 ; B counts words
(wordmove:
4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
180a , 3070 , (movb 1,x+,1,y+ ; move a byte, post-increment
03 c, (dey ; adjust Y back to DATA
4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
180a , 3070 , (movb 1,x+,1,y+ ; move a byte, post-increment
03 c, (dey
04 c, 31eb , (dbne b,wordmove ; continue till all are moved

31 c, (puly

7

30 c, (pulx ; recover registers
3a c, (puld ; and accumulator
3d c, (rts
end-code

code-sub read-cf
3b c, (pshd ; save D accumulator
34 c, (pshx ; save X register
35 c, (pshy

(; Setup Sector Address values

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
8601 , (ldaa #01
7a c, sctrcnt , (staa sctrcnt

cd c, FADR , (ldy #FADR ; point Y at FLASH address
4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
a643 , (ldaa 3,y ; LB of address
7a c, lba0 , (staa lba0

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
a642 , (ldaa 2,y ; ML byte of address
7a c, lba1 , (staa lba1

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
a641 , (ldaa 1,y ; set Low byte of ADR
7a c, lba2 , (staa lba2

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
a640 , (ldaa 0,y ; set High byte of ADR
840f , (anda #$0f ; only use low 4 bits
8ae0 , (ora #$e0 ; set CF1, LBA enabled
7a c, lba3 , (staa lba3 ; set high byte of ADR

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
8620 , (ldaa #read
7a c, command , (staa command ; set mode to READ

(Read a block of 512 bytes into RAM, checking RDY=1 before each write

cd c, buffer , (ldy #buffer ; X points at BUFFER
c600 , (ldb #256 ; B counts words
(wordmove:
4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
b6 c, cfdata , (ldaa cfdata ; read a byte
6a40 , (staa 0,y ; save to BUFFER
4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
b6 c, cfdata , (ldaa cfdata
6a41 , (staa 1,y
0202 , (iny 2X
04 c, 31e9 , (dbne b,wordmove ; continue till all are moved

31 c, (puly
30 c, (pulx ; recover registers
3a c, (puld ; and accumulator
3d c, (rts
end-code

(Read the ID sector on the compact flash card

code-sub read-cf-id
3b c, (pshd ; save D accumulator
34 c, (pshx ; save X register
35 c, (pshy

8

(Send IDENTITY code

4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
86ec , (ldaa #identify
7a c, command , (staa command ; set mode to READ

(Read a block of 512 bytes into RAM, checking RDY=1 before each write

cd c, buffer , (ldy #buffer ; X points at BUFFER
c600 , (ldb #256 ; B counts words
(wordmove:
4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
b6 c, cfdata , (ldaa cfdata ; read a byte
6a41 , (staa 1,y ; save to BUFFER
4f6f , 01fc , (brclr portad,#$01,* ; ensure RDY is high
b6 c, cfdata , (ldaa cfdata
6a40 , (staa 0,y ; note little-endian data format
0202 , (iny 2X
04 c, 31e9 , (dbne b,wordmove ; continue till all are moved

31 c, (puly
30 c, (pulx ; recover registers
3a c, (puld ; and accumulator
3d c, (rts
end-code
(---------------------- SPI INIT SUBROUTINE -----------------------------

code-sub spi-init (code to setup spi i/o
 4cd6 , 80 c, (bset ports,#$80 ; set SS line high
 180b , e0 c, ddrs , (movb #$e0,ddrs ; Configure PORT S ddr
 180b , 02 c, spobr , (movb #$02,spobr ; set SCLK rate = 1 MHz
 180b , 12 c, spocr1 , (movb #$12,spocr1 ; MSTR=1, CPOL=CPHA=0
 180b , 08 c, spocr2 , (movb #$08,spocr2 ; SPI 2 outputs, active pullups
 96d3 , (ldaa sposr ; 1st step to clear SPIF flag
 96d5 , (ldaa spodr ; 2nd step to clear SPIF flag
 4cd0 , 40 c, (bset spocr1,#$40 ; enable spi
 3d c, (rts
end-code

code-sub spi-off
 4dd0 , 40 c, (bclr spocr1,#$40 ; disable spi
 3d c,
end-code

(---------------------- UTILITY ROUTINES ---------------------------------

code-sub power-on
 4cfe , 20 c, (bset pdlc,#$20 ; enable board power
 3d c, (rts
end-code

code-sub power-off
 4dfe , 20 c, (bclr pdlc,#$20 ; disable board power
 3d c, (rts
end-code

code-sub insts-on
 4cfe , 40 c, (bset pdlc,#$40 ; enable insts power
 3d c, (rts
end-code

code-sub insts-off
 4dfe , 40 c, (bclr pdlc,#$40 ; disable insts power
 3d c, (rts

9

end-code

code-sub cpu-off
 180b , 0a c, portp , (movb #$0a,portp ; power off, bits = 0
 3d c, (rts
end-code

code-sub cpu-on
 180b , fd c, portp , (movb #$fd,portp ; power on, bits = 1
 3d c, (rts
end-code

(--------------------- FORTH CODE ----------------------------------

: bs
 20 0 do 08 emit loop
;
: tic-init
 fc tios c! (Timer bits 0-1 as input capture
 33 tmsk2 c! (set timer to 1 uS ticks
 80 tscr c! (enable timer
;
decimal
: wait-on
 20000 0 do
 3 0 do I drop loop
 loop
;
hex
: busy? (-)
 begin
 status c@ (read status register
 80 and (mask bit 7
 0= (is it clear?
 until
;
: get-regs (read CF registers
 busy?
 cferror c@ registers c!
 sctrcnt c@ registers 1+ c!
 LBA3 c@ registers 2 + c!
 LBA2 c@ registers 3 + c!
 LBA1 c@ registers 4 + c!
 LBA0 c@ registers 5 + c!
 status c@ registers 6 + c!
;
: disp-regs
 hex
 ." error code = " cferror c@ . cr
 ." sector count = " sctrcnt c@ . cr
 ." Hi address = " LBA3 c@ . cr
 ." Mid address = " LBA2 c@ . cr
 ." Mid address = " LBA1 c@ . cr
 ." lo address = " LBA0 c@ . cr
 ." status = " status c@ . cr decimal
;
hex
: setup-CF
 cr ." Setting up CF card ... "
 busy?
 01 features c! (enable 8-bit data transfer
 busy?
 fadr c@ LBA0 c! (install current sector address
 busy?
 fadr 1+ c@ LBA1 c!

10

 busy?
 fadr 2 + c@ LBA2 c!
 busy?
 fadr 3 + c@ 0f and
 e0 or LBA3 c! (Drive 0, LBA addressing
 busy?
 ef command c! (execute commands just loaded
 busy?
 ." done" cr
;
decimal
: disp-status
 cr ." BAE SYSTEMS " cr
 ." TAPS New Generation " cr
 ." CF-RAM TEST CODE v1.0" cr cr
;
(----------------------- TEST ROUTINES ---------------------------------
decimal
: fill-buff (N -)
 512 0 do dup buffer i + c! loop
 drop
;
: show-buff
 buffer 40 dump
;
: compare (n - flg)
 0 errorcount !
 512 0 do
 dup buffer I + c@
 = not if
 1 errorcount +!
 then
 loop drop
 errorcount @ 0= (set flg=TRUE if no errors
;
: write45
 cr hex
 45 0 do (write 45 sectors of data
 testbyte c@ fill-buff (fill buffer with byte pattern
 buffer 18 + c@ .
 write-cf (write a sector to CF card
 fadr 2@ 1. d+ fadr 2! (increment sector address
 loop
 cr decimal
;
: read45
 cr hex
 45 0 do (read 45 sectors of data
 0 fill-buff (clear buffer
 read-cf (read a sector from CF card
 buffer 37 + c@ .
 testbyte c@ compare
 drop
(if 46 emit else 42 emit then
 fadr 2@ 1. d+ fadr 2! (increment sector address
 loop
 cr decimal
;
: ud. (d -) (print unsigned double word
 <# #s #> type
;
: cfram-test (n - n)
 cr ." Testing Compact Flash RAM card " cr
 decimal
 read-cf-id 4 spaces

11

 buffer 2 + @ dup . ." cylinders " cr 4 spaces
 buffer 6 + @ dup . ." heads " cr 4 spaces
 *
 buffer 10 + @ dup . ." bytes/sector " cr 4 spaces
 buffer 12 + @ dup . ." sectors/track " cr 4 spaces
 * um* d. ." bytes available " cr 4 spaces
 buffer 42 + @ . ." sectors/buffer " cr cr

 get-regs
 disp-regs

 fadr 2@ tfadr 2! (save in temp loc'n
 setup-cf
 ." Starting sector address for write = " fadr 2@ d.
 write45
 ." Ending sector address = " fadr 2@ d. cr
 tfadr 2@ fadr 2! (put starting LBA in FADR
 setup-cf
 ." Starting sector address for read = " fadr 2@ d.
 read45
 ." Ending sector address = " fadr 2@ d. cr
 ." Press any key to continue " key drop cr
;
: do-choice (n - flag)
 dup 1 = if cfram-test then
 0 = if true else false then
;
: get-choice (- n)
 cr ." Choice = " key dup emit
 48 -
;
: disp-menu
 ." TEST MENU" cr
 ." testcf1.4th" cr
 ." 0 END" cr
 ." 1 CF RAM test" cr cr
;
hex
: init
 exram (hopefully redundant
 001a 00c0 ! (set baud rate to 19200
 0a portp c! (set ADC1 high, CPU peripherals off
 00 pdlc c! (set external power off
 00 portt c! (set MUX to CH 0, GAIN to 0
 ff ddrp c! (set Port P DDR
 ff ddrdlc c! (set Port DLC DDR
 fc ddrt c! (set Port T DDR; bits 0-1 are inputs
 fc tios c! (set Port T TIOS same
 86 c@ 80 and 86 c! (set TEN bit of TSCR, start timer
 01 80 c! (set output compare Timer 1
 power-off (disable ext power
 cpu-off (disable cpu peripherals
 0c dev-ctrl c! (soft reset of CF
 08 dev-ctrl c!
 30000 0 do I drop loop (short delay
 get-regs
 setup-CF
 2 places
 decimal
;
decimal
: main
 init spi-init spi-off cr disp-status cr
 power-on cpu-on wait-on
 0002. fadr 2! (put starting LBA in FADR

12

 139 testbyte c!
 setup-cf
 begin
 disp-menu
 get-choice
 do-choice
 until cr
 power-off cpu-off
;

(TESTCF1.4th - TAPS NG CPU TEST CODE - 19 May 2006

here u. cr
decimal

SCHEMATIC:

The schematic below shows the interface I used to drive a compact-flash
RAM card as a memory-mapped peripheral using the code above. J12 is the I/O
connector on both the 68HC11 and 68HC12 cards from New Micros Inc. The
code shown is for a 68HC12 card but there is no reason that a 68HC11 CPU
card can't drive a CF-flash card.

Separate /READ and /WRITE lines are de-coded from R\W and the E
clock lines and NAND'ed with the output of the comparator. Thus a simple read
or write operation, within the address limits imposed by the comparator, can be
used to send data to and from the CF-flash card.

13

