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Abstract Remote estimation of abundances and size distri-
butions of certain classes of marine organisms can, in principle,
be made from acoustical scattering measurements at several fre-
quencies. These estimates are obtained by solving an inverse
problem involving the acoustical measurements and predicted (or
measured) scattering coefficients for the organisms. The quality of
acoustical size-abundance estimates depends upon several fac-
tors, including the accuracy of the measurements, the functional
form and accuracy of the scattering model for the organism, the
number and choice of measurement frequencies, and the solution
algorithm. This paper describes the theoretical basis for multiple-
frequency acoustical estimation and analyzes some of the
problems involved in making accurate and precise estimates of
size abundances.

Introduction

The use of multiple-frequency acoustical measurements to estimate
size distributions of zooplankton was proposed several years ago by
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McNaught (1968) and, more recently, by Holliday (1977). The for-
mer used a specific scattering model for zooplankton to show that
echosounders operating at different frequencies should be maximal-
ly sensitive to scattering from zooplankton of different sizes. He
then suggested that differences in the echo levels at a pair of fre-
quencies might be used to estimate biomass in a size range deter-
mined by the two frequencies. Holliday presented a formal mathe-
matical method for estimation of size-abundance distributions
from acoustical measurements at several frequencies given an accu-
rate model for the scattering strength of individual targets.

Improved solution methods for the multiple-frequency scattering
problem were obtained by Johnson (1977a) and used to estimate
size distributions and total abundance of swimbladder fishes. These
algorithms were later used by Greenlaw (1979) to estimate size-
abundance profiles for euphausiids in a fjord and by Holliday
(1976) to estimate distributions of swimbladder sizes for larval and
Juvenile anchovy. Agreement with independent samples of the scat-
tering populations was quite good, demonstrating the power of this
technique for at least some species of micronekton.

Application of multiple-frequency acoustical estimation to a spe-
cific target population is, conceptually at least, straightforward but
significantly more complex than most bioacoustical applications.
The (potential) precision and resolution of this method also re-
quires more careful experimental design by the user. There are three
basic“parameters” which the experimenter can vary to suit a partic-
ular situation: (/) the measurement frequencies, (2) the spatial cov-
erage and resolution of the measurements (through the transducer
directivities and method of deployment), and (3) the data process-
ing algorithm. All of these must be chosen on the basis of some
assumed characteristics of the target population (range of numeri-
cal densities, expected size distributions, spatial patterns, depth(s)
of occurrence, etc.) and their usually complex relationships with
acoustical measurements. Since this is still an experimental tech-
nique with some yet unresolved problems, we will attempt here only
to describe the basic estimation problem, explore some relevant
measurement factors that must be considered in designing a multi-
ple-frequency acoustical system, and briefly discuss the mathemati-
cal estimation problem.
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Basic Estimation Method

Zooplankton are, individually, very weak scatterers of sound. In
most realistic situations, useful echoes from zooplankton will only
be obtained when many individual zooplankters are simultaneously
contributing to the total echo. When this is the case, it is usually
assumed that the addition of the individual echoes is random in
such a way that the total intensity of the scattering at some instant
is, on average, equal to the sum of the intensities of the individual
echoes contributing to the echo at that instant. Symbolically,

N(1)

L= Y I,
I=1

where I.(7) is the intensity of the scattering at time ¢ and the 7, are
the echo intensities of each of the N(¢) scatterers insonified at time
t. The echo intensities for the individual scatterers are functions of
the frequency of the incident sound waves, the size (and perhaps
other parameters) of the scatterers, their range, and the source level
and directional properties of the transducer.

If the scatterers can be assumed to be uniformly and homogene-
ously distributed throughout the insonified volume, the effects of
range and transducer directivity can be accounted for by applying a
correction to I.(¢) (e.g. Urick, 1967 [p. 190-194]). The corrected
intensity, I'.(?), is then related to a sum [over a corrected number of
scatterers, N'(¢)] of the actual echo intensities of the scatterers

Ny'(2)
B ="y & (1

If the scatterers happened to have identical scattering strengths,
I, we would have I'(r) = N'y(¢)I. It is more likely that the scatter-
ing strengths of the individuals will vary, however, particularly if
there is a distribution of sizes present. A size distribution may be
incorporated into the summation (Eq. 1), assuming the scattering
strength dependence on size and frequency is known, in two ways.
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If N'.(¢) is large, we can assume a continuous size distribution of the
form

N(a) = N./(1) P(a)

where a is a characteristic size parameter. The function P(a) is
similar to a probability density function, having the property

SZP(a) da = 1.

We denote the scattered intensity at frequency f from scatterer of
size a by I(f)R (f,a) where I, is the incident intensity. Then, since
N'(2) is large, the sum can be taken to a limit and we have

I/(tf) = 1(t) f;°R (Fa)N. (a)da. 2)

If N;/(¢) is not large enough to justify the integral for Eq. 2 but
sufficiently large that the random addition hypothesis is reasonable,
or if the size distribution is discontinuous (e.g., organisms occur in
discrete sizes), we can write the summation (Eq. 2) as

S
L) =10 Y Nua)R(a) (3)

i=1

where s is the number of size classes.

Equation 2 is a Fredholm equation of the first kind. Methods
exist to estimate the function N.(a) given measurements of I;/(z,f) at
several frequencies and a knowledge of R(f,a). These methods usu-
ally involve approximating the integral as a sum

)
L) = I ) WN(a)R(fa)da @)

i=1

where W, are weights derived from a quadrature formula. Since the
discrete and continuous size distributions are related by
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N, (a;) Aa =~ Ny(a,)

it can be seen that the integral form (Eq. 2) and discrete sum form
(Eq. 3) differ only slightly. Thus the sum (Eq. 3) can be used as a
prototype form.

The essence of the multifrequency estimation method is to apply
equation 3 at a number of frequencies. For example, suppose we
measure the relative scattered intensity (/ = I,'/1,) from a given
volume at fixed range at F frequencies. Applying Eq. 3 for each
frequency we have the set of equations

I(f) =~ N(@a)R(f,a) + N(a)R(f,,a,) + ....+ N(a,) R(f,.a,)
I(f,) =~ N@)R(f,, a;) + N(a)R(f,, a) + ....+ N(a)R(f, .a,)
f(fn) ~ N(a,) R(fr,a,) + N(a,)R(fp,a,) + ....+ N(a)R(fr.a,). (5)

These equations form a set of linear equations in the unknowns
N(a;) with constant coefficients R(f},a;). Solution of this set yields
an estimate of the size abundance of scatterers in the volume con-
sidered.

Unfortunately, solution of these equations is not a simple matter.
From a strictly mathematical point of view, one must be concerned
first with the existence of any solution at all [which is determined by
the matrix of coefficients R(f;,a;)], next with the uniqueness of the
solution (if F > s, there is no unique solution—although a “best”
solution may be found), and then with the quality of the solution.
These problems will be treated in a later section together with a
general discussion of solution methods. The quality of the solu-
tions, as will be shown later but is self-evident, is clearly a function
of the quality of the input data [the measurements /(f;) and the
assumed scattering behavior of the scatterers contained in the coef-
ficients R(f;,a,)].

There are three types of measurement error that can affect the
solutions: random error, bias error, and what we might term validi-
ty error (which occurs when the conditions of measurement are
such that model equations 5 are not valid). These errors will be
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described in the next section. Errors in the scattering strength coef-
ficients certainly have an effect on the quality of the solutions also,
but in a way that is difficult to quantify in general terms. Most
scattering models for biological organisms are based upon idealized
analyses or modest sets of measurements and may be insufficient
for precise acoustical estimation using Eq. 5. Some comments on
scattering models will be made following the discussion of measure-
ment errors.

Acoustical Measurements

It is a fact of experience that sequential measurements of the scat-
tered intensity from a region containing biological sound scatterers
yield a sequence of fluctuating values. Theories to predict the statis-
tics of this volume-reverberation process have been developed (e.g.,
Faure, 1964; Ol’shevskii, 1967; Middleton, 1967) and compared
with measurements (Cron and Schumacher, 1961; Jobst and Smits,
1974). We can safely predict that the intensities we measure in order
to apply the acoustical estimation techniques will be stochastic
quantities, hence we anticipate the need to use averages of several
measurements in Eq. 5. This in turn implies that our measured data
will be subject to random error, due to finite sampling, and perhaps
bias error as well.

The results of the theories can, with certain reservations, be used
to predict the echo statistics for volume reverberation. If we make
two important assumptions*, that the scatterers are uniformly ran-
domly distributed throughout the insonified region, and that there
are a large number of scatterers in the region, then it is straightfor-
ward to show that the echo amplitudes should follow a Rayleigh
distribution, the intensities should follow an exponential distribu-
tion, and the log intensities should follow a modified exponential
distribution (Dyer, 1970; Urick, 1977; Papoulis, 1965; Mikhalev-
sky, 1979). The probability density functions corresponding to
these distributions allow calculation of mean values (where it is

*In the case of fairly strong scatterers such as fish, we must also assume that no multiple
scattering occurs.
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found that log intensities are biased estimates but amplitudes and
intensities are not) and the population variances.

Given the population mean and variance of a random variable, x,
we can estimate the 1-a level confidence interval for the expected
mean from a set of N measurements by

% 6o g,

CI(X) = p,[1 = \/N ;L; >

where ¢ is Student’s ¢ parameter. We have calculated 95% confidence
intervals for amplitude, intensity, and log-intensity averages as a
function of N using this relationship and the appropriate popula-
tion means and variances; the results are plotted in figure 1. The
abcissa values are the total relative width of the confidence interval
of the mean, CI(X)/p,, in decibels. (It should be noted that confi-
dence intervals expressed in decibels are not symmetric for ampli-
tudes and intensities, although the differences are small for modest
values of the confidence interval).

The figure shows two points of interest. First, it is apparent that
averages of amplitudes, intensities, and log intensities produce
about the same confidence interval, at least for averages of more
than about 10 pings. Second, and most important, reduction of the
uncertainty in the data estimate to very low levels will require a
disproportionately large number of (independent) samples. For ex-
ample, if we wish to attain =1 dB (— == 12%) uncertainty or less
(for just this component of the random error) we must have over 70
samples of the scattering process for our averages. That is, at least
70 pings are required to achieve #=1 dB uncertainty limits on the
true scattered intensity.

This latter result has additional implications for sampling at sea.
Implicit in the statistical theory is the assumption that the scatterer
population is statistically stationary during the measurements. If
the measurements are taken from a moving platform it is possible
that changes in the parameters of the scattering population might
occur during the time required to obtain the requisite samples for a
desired precision. Should this occur, the sample variance will in-
crease beyond the predicted value and, of course, the average inten-
sity will no longer bear the assumed relationship to the number of
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scatterers. The horizontal scales of inhomogeneity for the scattering
population will determine the magnitude of this effect. A partial
solution is to increase the ping rate to the maximum practical extent
or to reduce the ship speed. The potential for encountering in-
homogeneous data is also increased by the requirement of measure-
ments at several frequencies. Tests exist for determining the homo-
geneity and stationarity of data such as these (Middleton, 1969)
and could, in principle, be applied at sea to create subsets of data
suitable for further processing. However, this might impose an un-
wonted complexity on a practical acoustical system.

Another factor limiting both the accuracy and precision of acous-
tical measurements is noise. The reverberation echoes will be seen
against a background of thermal (and, at low frequencies, wind
wave and shipping) noise present in the water and noise will be
added in the receiving electronics. This noise will generally add
incoherently with the reverberation echoes, producing both bias
errors and increased echo variance. If the total noise is Gaussian
with rms intensity o2, and the reverberation echoes are Rayleigh
with expected intensity I, then the expected value of the intensity
of reverberation plus noise is

<Ipw> = Ip + (6)

if the reverberation and noise are uncorrelated.
With some calculation it can be shown that the variance of the
total intensity is

Var(Ip,y) = Var(p)[1 + (4/8)+(2/5%)] 7

where S = [Iy/0%y] is a measure of the signal-to-noise ratio (SNR).
The factor in brackets is the increase in variance of the measured
intensities over the expected value due to the presence of uncorre-
lated noise. This factor, expressed as percentage increase in Var(J),
is plotted in Figure 2 versus the signal-to-noise ratio in decibels

SNR = 10 log [Ix/03].

It can be seen that this increase in variance of the intensity is mod-
est (< — 25%) so long as the SNR is at least 12 dB.
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The bias effect of noise is also low if the SNR is large. Even for
modest SNR, the true value of the reverberation intensity may be
estimated by subtracting an estimate of the noise intensity from the
measured intensity. The validity of this estimate decreases with
decreasing SNR, of course. However, this a posteriori accounting
for noise effects is not useful for experimental design. It is known
that ambient noise is frequency dependent and we are expecting
frequency-dependent volume scattering strengths in order to pro-
duce our estimates of size abundance; thus we must anticipate the
SNR to vary with frequency. SNR will also vary with the level of
the scattering strength (i.e., with the number and size composition
of the scatterers) and with the source level of the projecting trans-
ducer(s).

An example of the dependence of SNR on these factors is illus-
trated in Figure 3. The curves in this figure predict the value of
SNR —(SL + 20 log 7), where SL is the projector source level and 7
is the pulse length, for scattering from a population of euphausiids
at 100-m range. We have used the size distribution of euphausiids
measured at Saanich Inlet, B.C. (Greenlaw, 1979) and a scattering
model for euphausiids (Johnson, 1977b; Greenlaw, 1977) to calcu-
late volume scattering strengths for various densities (no./m?®) of
euphausiids, p. Noise levels were taken from Urick (1967) for sea
state 0. A circular piston transducer is assumed (the size is irrele-
vant) for these calculations, as is a matched bandwidth receiver.
The horizontal dashed line indicates SNR = 0 for the combination
SL = 105 dB//ubar, 7 = 1 msec, and a receiver with a noise figure
of 10 dB.

If a SNR of 10 dB is considered minimal for accurate measure-
ments, it is clear from the figure that this combination of system
parameters is inadequate at any frequency for euphausiid concen-
trations around p = 1/m?®. At densities of about 10/m? we would
have adequate SNR over the frequency range 60—200 kHz. Higher
densities yield wider frequency limits and higher SNRs, as one
would expect. SNR may be increased by increasing the projector
source level and by increasing the transmitted pulse length, but not
indefinitely. Source level is limited by cavitation (Urick, 1967) to a
practical maximum of about + 125 dB//pbar for projectors located
near the surface. The longest useful pulse length will be deter-
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mined by the thickness of the scattering layers and the desired
depth resolution. Increasing the pulse length beyond twice the layer
thickness does not increase the SNR further.

The third type of error we noted involved the validity of the
model equations (Eq. 5). It was explicitly noted that the basic as-
sumption for the model was the presence of a large number of
scatterers in the insonified volume, as this allowed representation of
the total scattered intensity as the sum of the intensities scattered
by the individual organisms, which in turn led to Eq. 5. If the
number of scatterers insonified is not large, however, the intensity
representation can no longer be made and the validity of the model
equations is suspect. This is clearly the case for a single scatterer,
where the echo statistics are dominated by the location of the scat-
terer in the beam rather than by the intensity-summation process. A
reasonable question, then, is how many scatterers must be insoni-
fied to assure that Eq. 5 is valid?

This problem is entirely analogous to the statistical problem of
when it is valid to apply the Central Limit theorem. Rules of thumb
are often used to make a decision, with the magic number of inde-
pendent random variables (i.e., scatterers) ranging from 5 to 30 or
more. There is no strictly correct finite answer, of course. It can be
shown that increasing the number of scatterers reduces the variance
of the echo intensity closer to the theoretical value and the converse
is also true. The approach to the theoretical value is asymptotic in
much the same way as was shown for confidence intervals of aver-
age intensity versus the number of pings (Figure 1). The expression
relating the excess intensity variance to the number of scatterers is
complex, since it must include the effects of scatterers strengths
(presumed random) and beam pattern effects, and nonlinear, so
that sweeping generalizations are not possible. Sample calculations
for a circular piston transducer at various directivities were made
and it was found that the statistical rules of thumb were fairly
adequate (increases in variance of no more than 25-50% for N=30)
if the insonified volumes were calculated from the —3-dB
beamwidths of the transducer intensity pattern and the pulse length
(¢7/2). From this, one can estimate the minimum scatterer density
(as a function of range) for which a given echosounder will yield
useful echo statistics or select the directivity for an echosounder
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based upon expected minimum densities. This result also suggests
that the maximum possible spatial resolution of volume scattering
is dependent upon the scatterer density.

Scattering Models

The coefficients expressing the size-frequency dependence of the
scattering from individual organisms, R(f},a,), are critically impor-
tant to both the existence and quality of the solution estimate. No
solution will exist if the matrix of scattering strength coefficients is
singular and computed solutions will be unstable (subject to large
variation as the input data changes slightly) if this matrix is nearly
singular. The multifrequency estimation method will work poorly,
if at all, for situations where the size and frequency dependence of
the scattering strengths for an individual organism is jointly linear.
For example, if R(f,a) = g(f)a? for all the measurement frequencies,
it would not be possible to distinguish four scatterers of size a, from
one scatterer of size 2a,. In this example the matrix of scattering
strength coefficients would be singular. Best results should obtain
when the population size and measurement frequency ranges are
such as to yield a matrix of coefficients that are independent. The
character of the size-frequency dependence of scattering strengths
is an inherent property of the organisms, though. If a nonlinear
region of size-frequency-dependent scattering strength exists for a
particular organism then we may choose the measurement frequen-
cies to exploit this. If no such region exists, these methods are not
applicable.

Scattering strengths are not known precisely for any biological
organisms, although some measured values are available for several
disparate genera. Usually scattering strengths are estimated from a
model, of which there are two distinct types: Empirical models,
such as that developed by Love (1977) for fish, are essentially aver-
ages of many measurements expressed as functions of organism
size, measurement frequency, and orientation of the organism.
Conceptual models exploit some assumed physical similarities be-
tween organisms and certain geometric scatterers. A relevant exam-
ple is the fluid-sphere scattering model (Anderson, 1950). This
model has been applied with some success by Holliday and Pieper
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(1980) to predict volume scattering strengths of copepods and, in
modified form (Johnson, 1977b), to estimate size-abundances of
euphausiids (Greenlaw, 1979).

Conceptual models are attractive for a number of reasons, in-
cluding the ability to incorporate physical property variations in
the model and the potential for describing many species with slight
modifications of a prototype model. The continuous nature of a
mathematical expression eases interpolation to frequencies or sizes
not measured, with somewhat more confidence than a purely em-
pirical model might permit. However, validating a conceptual
model is not simple.

Neither type of model accounts for statistical behavior of the
echoes. Empirical models explicitly use mean values, accounting for
random variations of the scattering strength by assigning a confi-
dence interval to the means. Conceptual models developed so far
are wholly deterministic and observed variation in the echo levels
merely serves to confound the comparisons of theory and experi-
ment. The average measured volume-scattering intensity is propor-
tional to the average (over size at a given frequency) scattering
strength of the insonified organisms, thus mean values are neces-
sary outputs from a scattering model. Where some of the experi-
mental echo level variation is due to a behavioral characteristic of
the organisms, however, such as aspect fluctuations for fish (Foote,
1980) or orientation changes for vertically migrating euphausiids
(Sameoto, 1980; Greenlaw, 1977), the effective uncertainty as well
as the mean value of the estimated scattering strengths can become
both frequency dependent and time-of-day dependent.

The variance of the measured intensity contains the components
of the variance of the scattering strengths (see Moose and Ehren-
berg, 1971, for similar results for echo integration). In expressions
for the relative variance, Var (I)/ <I>?, the effect of scattering
strength variance is inversely proportional to scatterer density.
Thus we expect the random component of scattering strength to be
important only when the density of scatterers is low, i.e., where we
might be more concerned with the validity of our assumptions any-
way.

Scattering model development constitutes the most serious tech-
nical impediment to application of multifrequency acoustical esti-
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matiom at the present time. No model has been validated for any
organism with sufficient precision to allow significant confidence in
acoustically estimated abundances. The components of variation
for scattering strengths are not well understood and are not gener-
ally incorporated in the models currently used. A good deal of work
in the areas of model development and model validation is called
for before the estimation of scattering coefficients can be consid-
ered accurate.

Solution Methods

The original integral relationship (Eq. 2) is a Fredholm equation of
the first kind. It is well known (by Riemann’s lemma) that this type
of equation constitutes an ill-posed problem. Consider, for exam-
ple, the equation g(x) = [, ® K(x,y)f(y)d y. To any function f{y) we
may add a perturbation Csin(wy) which, for suitable choices of w
and for any C, produces very small changes in g(x). Clearly the
converse is true: very small errors in measuring g(x) can potentially
produce large variations in our estimates of f{y). The degree to
which these inverse solutions are unstable depends in part upon the
functional form of the true f{y), the kernel K(x,y), and the solution
method chosen. Generally, both the unknown function and the
kernel are fixed (not under the experimenter’s control to any signifi-
cant extent) and thus one can only vary the solution method to
minimize the inherent instabilities of the problem.

A number of somewhat different solution techniques have been
developed for treating inverse problems similar to the one consid-
ered here. Certain of these are described (following generally the
classification of Ishimaru, 1978) in the following sections.

Least Squares

We assume that the set of Egs. 5 is a sampled version of the integral
Eq. 2, which relates measured scattering intensities to the properties
of the scatterers. Thus we can state the problem to be solved in the
matrix form

RN=X 8)
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where R is the m X n matrix of scattering-strength coefficients, N is
the n X 1 vector of unknown abundances, and X is the m X 1
vector of measurements (scaled to absolute units). A straightfor-
ward solution for Eq. 8 can be written (Smith and Franklin, 1969;
Jackson, 1972) as

N ~ (R®™R) 'R"X for m=n
or ®)
N (R*(RR™) 'X for m<n

where R is the transpose of R and (-)! denotes the inverse. For the
case m=n (more measurements than unknowns), Eq. 9 yields the
classic least-squares solution which minimizes the residual

& = ¢% = (RN—X)"(RN—X) (10)

For m<n, Eq. 9 yields a solution that minimizes the euclidean
length of the unknown vector, | |N||. Note that a single solution is
obtained in either case of Eq. 9.

For the case m=n we can write an expression relating measurement
errors, 8X, to the errors in the estimate of N, 8N (e.g. Ishimaru, 1978)

H%V]XHSII RR" || - || R - ||6—§‘HEBH6—§H (an

where
|IN|| = max |N,| i=12,.m

for the vectors N, 8N, X, and 86X and

n
R[] = "2 Ry
j=1
for the matrix factors. If the determinant | R™R| is small, as would
be the case if the elements of R are not very different, then the norm
| [(R™R)~'|| can be quite large (orders of magnitude; see the exam-
ple in Ishimaru, 1978) and errors in the measurements will be mag-

i]'l
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nified in the solution estimate. Conversely, if the elements of R can
be chosen (in our problem by choosing the measurement frequen-
cies and the sizes at which we want to estimate abundances) in such
a way as to maximize their differences, this magnification effect can
be reduced. Note that 8 = 1, however; we cannot achieve estimates
of greater precision than our data.

If the errors associated with the measurements X, are zero-mean
normal random variables with equal variance for each measure-
ment frequency, then the residual (Eq. 10) is a measure of the fitting
error of N to the true size abundance. The accuracy of our estimate
is then dominated by the accuracy of the scattering model and the
choices of frequencies and sizes, the precision by the measurement
variance. We have shown previously that measurements of volume
scattering contain a bias error (calibration errors and incoherent
noise, Eq. 6) and that the measurement variances will not be con-
stant (Eq. 7 and following discussion), however. Thus we must an-
ticipate that the solution with minimum residual will not necessari-
ly be the closest possible estimate to the actual size-abundance
distribution.

Since the variance of a single measurement is indeterminant, it is
clear that we must use the average of many measurements at each
frequency as our input data. If we obtain similar average values for
ambient noise (measured through the same system path as the re-
verberation echoes) then the bias effect of noise can be approxi-
mately removed by subtracting the rms noise intensity from the
reverberation data (e.g., Eq. 6). In addition, if we estimate the mea-
surement variance at each frequency it is feasible to approximate
the equal variance situation by row scaling the vector X and the
matrix R, viz. (Jackson, 1973)

Xi—n,
S;

X, = i=12,..m

where 7, is the noise intensity at frequency i and S, is the measured
standard deviation, and the scattering matrix elements

B = % i=1,2,..m; all j
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The remaining components of bias error are those related to cali-
bration. If these are negligible (in the context of Eq. 11, which is
probably not the case), the least-squares solution to the scaled
problem is the best-fit estimate the problem itself will allow.

In the situations likely to occur in practice (where calibration
errors are — 5—10%, the scattering model is only approximate, and
the mesh of frequencies and sizes are suboptimal) the inherent in-
stabilities in the problem will probably produce inaccurate esti-
mates. One dramatic way that inaccuracies may appear is the esti-
mation of negative numbers of scatterers at some size or sizes. This
sort of answer is physically impossible, of course, and merely signi-
fies the presence of relatively large errors in the solution. When an
experiment has been designed to minimize 8 (Eq. 11) and the data
quality is apparently high, implausible results may serve as indica-
tors that some aspect of the problem is incorrect. For example,
scattering from fish can easily dominate that from zooplankton and
solutions based upon a zooplankton-only scattering model usually
will be strikingly implausible.

The possibility of estimating negative abundances can be elimi-
nated by adding the following constraint to the problem:

N, =0, all i. (12)

This constitutes additional information about the unknown vector
N and, in principle, should not reduce the accuracy of the solution
estimate. Non-negativity is a fairly straightforward constraint for a
least-squares problem. One algorithm for solving Eq. 8 with con-
straint Eq. 12 is NNLS (Lawson and Hanson, 1974). We have used
this algorithm with some success to estimate size abundances of
swimbladders in mesopelagic fishes (R. K. Johnson, unpublished)
and of euphausiids (Greenlaw, 1979). NNLS is useful for under- as
well as over-determined problems.

When there is reason to believe that the solution with minimum
residual may not be the best solution, it is possible to modify a
least-squares problem to allow more than a single solution. These
solutions can then be inspected according to some criterion and
the“best” of these selected. An example is the Levenberg-Mar-
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quardt analysis method where the original problem, Eq. 8, is modi-
fied by adding rows (Lawson and Hanson, 1974):

N =

x]_

X (13)

R
R,
Generally we take R, = A, where A is a positive parameter and /
is the identity matrix. The addition to the data vector, X, can be
taken as zeros, in which case we are expressing a preference that
| |V] | be small. Solutions to Eq. 13 depend upon the parameter A.
Generally, small values of A lead to small values of &2 and large
values of | [N|| and B. Large values of A tend to yield smaller
values of | |N|| and B, but larger residuals. Clearly this sort of
analysis contains a measure of subjectivity in choosing among
solutions. Since the practicality of choosing an optimum A for
each set of new data rests upon devising an algorithm relating A,
B, €, and | |N||, it is necessary to choose a selection criterion a
priori. This subjective choice can often be given the guise, if not
the substance, of objectivity (for example, by choosing A such that
¢® and | |N||? are jointly minimum).

Regularization Methods

Regularization methods are similar to the least-squares method just
described. The initial development by Phillips (1962) has been ex-
tended by Twomey (1963) and Tihonov (1963). The basic difference
between regularization and least squares is the assumption that
N(a) is a smooth function. Regularization also explicitly provides
for the input of a trial distribution, Ny(a), which constitutes a guess
about the true solution.

Starting with the problem, Eq. 8, regularization seeks a solution
N which minimizes the quantity.

$* = (RN=X)"(RN=X) + v, (N—N,) TN—N,) + v, (BN)"(BN) (14)
where y,, y, are non-negative parameters and B is a smoothing

matrix. The first term of Eq. 14 is the least-squares residual, 2. The
second term measures the difference between the solution, N, and
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the trial function, N,, weighted by the parameter y,. The last term
measures the smoothness of N (BN = 0 implies perfect smooth-
ness) weighted by y,. Commonly, v, is set to zero because a trial
function cannot be obtained with any confidence. The solution in
this case can be written (m=n)

N~(R'R + yv,B)* R'X (15)

and is a function of a single parameter (Chow and Tien, 1976).

As v, — 0, this solution approaches the least-squares solution of
Eq.9. This is the case of no smoothing. Increasing v, increases the
smoothing effect of the matrix B. No objective method is known for
choosing an optimum value of y,, which is a distinct drawback for
use of this technique in acoustical estimation. The effect of vy, was
investigated by Chow and Tien (1976) for an analytical situation.
Interestingly, the values of vy, presented for various amounts of
random noise added to the“measurements” ranged from 10 (no
errors) to 5 X 107 (5% errors).

Another method that imposes smoothing on the solution is
stochastic extension, developed by Franklin (1970). This technique
explicitly recognizes the stochastic nature of both the measure-
ments and the unknown abundance vector and bases a solution
upon the (usually assumed) statistical properties of each. For exam-
ple, if we can assume that the measurement errors and the abun-
dance variability are independent, the inverse matrix for R compar-
able to Egs. 9 and 15 is

(CyxR™) (RCyyR™ + Cxx)?

where C, , is the covariance matrix of measurement errors and Cyy
is the covariance matrix for the abundance vector. Cy x can often be
measured but Cyy is generally unknown. Adroit choice of Cyy can
reduce the error magnification factor, 8 (Eq. 11) considerably
(Ishimaru, 1978), at least in principle. The major difference, in prac-
tice, between regularization and stochastic extension is the need to
estimate a single parameter in the former and a matrix of parame-
ters in the latter.
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Backus-Gilbert Inversion

The inversion technique developed by Backus and Gilbert (1970) is
a smoothing scheme, similar in some respects to regularization. A
parameter, g, is used to obtain a family of solutions as in regulariza-
tion. The unique feature of Backus-Gilbert inversion, however, lies
in the fact that g is a bounded (0 =< g < 1) parameter which directly
controls the trade-off between resolution of the unknown function
and the fitting error.

It is intuitively obvious that we cannot expect to obtain an exact
representation of our unknown function, N(a), from a finite set of
measurements, X(f). For a given number of independent measure-
ments, information theory suggests that we should be able to accu-
rately estimate about that number of independent points of N(a).
Attempting to estimate more points leads to a leakage phenome-
non, where the estimate at a given point becomes a weighted aver-
age of the estimates at surrounding points. Similar smearing occurs
when the data and/or size mesh are not independent.* In other
inversion techniques the form of the weighting function that smears
the resolution of the N(a) is uncontrolled; it is implicitly set by the
problem itself. Backus-Gilbert inversion differs by explicitly at-
tempting to control this weighting function and, thus, the resolu-
tion of the solution.

Suppose we express the averaging or smearing process as

N@,) = [* A(aa,)N(@)da, j=12,.,N (16)

a0

where N(q;) is the weighted average of N(a) at a = a; and A(a,a;) is
some weighting function. As 4(a,a;) approaches a delta function at
a;, the effect of neighboring values of N(a) is decreased; corre-
spondingly, the resolution of N(q;) is increased. We do not have
complete freedom in choosing the weighting function, however.
Backus and Gilbert (1970) assume that the A(a,a;) are a linear
combination of the kernel function, R(f,a)

*This is determined by the scattering model and the choice of frequencies and sizes. For
perfectly independent data we would have 8 = 1 in Eq. 11.
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m

A(aa) = Jp,  R(ha) (17)
i=1

where the b, are constants to be determined. Inserting Eq. 17 into
Eq. 16 we obtain

M
2 b; fa‘;l R(f.,a;)N(a)da (18)
i=1

N(a,-)

which is a formal solution to the problem.

The choice of the coefficients b, is assisted by defining two func-
tions: a measure of resolution termed the spread function, s(a;), and
the error variance o%(a;) (see Backus and Gilbert, 1970; Chow and
Tien, 1976; Westwater and Cohen, 1973; and Ishimaru, 1978, for
details), both of which are functions of the b,. Then a weighted sum
of the spread and error is formed

Oa;) = gs(a;) + (1—q)wo® (a;)

where w is a constant chosen so that s(a;) and wo*(a;) are about the
same magnitude over the a;. The coefficients b; are found by mini-
mizing Q(a;) and solutions, N(a;) obtained from Eq. 18. The pa-
rameter g allows a trade-off between errors (minimum variance)
and resolution (minimum spread) as ¢ is varied from 0 to 1.

Remarks

Successful application of multiple-frequency acoustical estimation
has been shown to require (/) accurate and precise measurements of
volume scattering from organisms; (2) the individual scattering be-
havior of these organisms must be accurately known; and (3) nu-
merical inversion of these data must be accomplished by a stable
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and accurate inversion algorithm. We have attempted here to de-
scribe some of the more important factors that determine how well
one can meet these requirements and suggest the critical areas for
further development. Clearly, the major technical impediment to
more widespread use of this technique is the lack of validated scat-
tering models. This is largely a problem of obtaining sufficient
measurements on important species. The difficulties involved are
technical rather than conceptual and can be overcome. A less criti-
cal area is the development of satisfactory inversion algorithms
which, it was noted, will require reasonably accurate scattering
models. We forsee no major difficulties in this work either. Much
work remains to be done to attain a reasonable degree of physical
and mathematical rigor for this technique but, at this point, there
appears to be no reason not to expect eventual success.

Once the mathematical consistency of multiple-frequency esti-
mation is demonstrated (in the manner of Chow and Tien, 1976; or
Westwater and Cohen, 1973, for example) it will still remain to
demonstrate the accuracy of acoustical abundance estimates. This
may prove to be unusually difficult. There is no practical way to
determine absolutely the size-abundance distribution of a scatter-
ing population in realistic ocean environs (if there were, biologists
would be using it and we would have little need for acoustical
sampling) so, in one sense, the accuracy of any sampling method is
indeterminate. Some form of accuracy demonstration will be re-
quired, however, before an acoustical technique will be acceptable
to most biologists as a valid sampling tool. Such a demonstration
might take the form of laboratory measurements of scattering from
known populations of organisms, with comparisons of acoustically
estimated and measured size abundances. It would be difficult to
simulate all of the complexities of real-ocean assemblages in a labo-
ratory tank, though, and it might in some ways be more convincing
to compare acoustical estimates with some more conventional sam-
ples, such as those from nets.
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